Step of Proof: p-conditional-domain
11,40
postcript
pdf
Inference at
*
2
I
of proof for Lemma
p-conditional-domain
:
1.
A
: Type
2.
B
: Type
3.
f
:
A
(
B
+ Top)
4.
g
:
A
(
B
+ Top)
5.
x
:
A
6. (
isl(
f
(
x
)))
(
isl(
g
(
x
)))
isl(if isl(
f
(
x
)) then
f
(
x
) else
g
(
x
) fi )
latex
by ((((D (-1))
CollapseTHEN (SplitOnConclITE))
)
CollapseTHEN (Auto
))
latex
Co
.
Definitions
P
Q
,
left
+
right
,
Unit
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
x
:
A
B
(
x
)
,
P
Q
,
False
,
,
,
s
=
t
,
b
,
t
T
,
A
,
b
,
x
:
A
.
B
(
x
)
Lemmas
eqtt
to
assert
,
iff
transitivity
,
eqff
to
assert
,
assert
of
bnot
,
bool
wf
,
assert
wf
,
bnot
wf
,
not
wf
origin